

Hardware IFU—TC1034

Version: V1.30 | English

Document Revision History:

Documentation Edition	date	Update content	remarks
V1.00	2022.12.13	Create a document	
V1.10	2022.12.19	Update the document	
V1.20	2023.5.26	Update the document	
V1.30	2023.6.27	Update the document	

Copyright information

Shanghai TOSUN Technology LTD

6 / 8,4801, Jiading District, Shanghai

In line with the principle of providing better service to users, Shanghai TOSUN Technology LTD (hereinafter referred to as "TOSUN Technology") will present detailed and accurate product information to users as much as possible in this manual. However, since the content of this manual has a certain timeliness, the TOSUN Technology can not fully guarantee the timeliness and applicability of the document at any time period.

The information and data in this user manual are subject to change without notice. In order to get the latest version, please visit the official website of the company or contact the staff. Thank you for your tolerance and support! Any part of this manual shall not be reproduced in any form or in any manner without written permission of TOSUN Technology.

@ Copyright 2023, Shanghai TOSUN Technology LTD. All rights reserved.

catalogue

	l
1.1 Product Overview	1
1.2 Typical applications	1
1.3 Functions and parameters	2
1.4 Supply list	5
2. Hardware instructions	6
2.1 Description of hardware appearance and interface	6
2.2 LED indicator light instructions	7
3.Quick use	8
3.1 Download and install the TSMaster host computer	8
3.2 Hardware configuration	10
3.3 Flexray database loading	12
3.4 Flexray hardware configuration	13
3.4.1 HW Config Hardware configuration	13
3.4.2 Protocol protocol	14
3.4.3 Controller Parameters Controller parameters	15
3.4.4 Tx Buffer (important configuration)	16
3.4.5 Rx Buffer	17
3.4.5 Rx Buffer	
	CU node
3.4.6 Operation Example-Simulation of two cold-start E	CU node
3.4.6 Operation Example-Simulation of two cold-start Ecommunication	CU node 18
3.4.6 Operation Example-Simulation of two cold-start E communication	CU node1821
3.4.6 Operation Example-Simulation of two cold-start E communication	CU node18212125
3.4.6 Operation Example-Simulation of two cold-start E- communication	CU node1821212525
3.4.6 Operation Example-Simulation of two cold-start E communication	CU node212527
3.4.6 Operation Example-Simulation of two cold-start E communication	CU node21252727
3.4.6 Operation Example-Simulation of two cold-start E communication	CU node182125272728
3.4.6 Operation Example-Simulation of two cold-start E communication	CU node18212527272829
3.4.6 Operation Example-Simulation of two cold-start E communication	CU node1821252727282930
3.4.6 Operation Example-Simulation of two cold-start E communication	CU node18212527282931
3.4.6 Operation Example-Simulation of two cold-start E communication	CU node1821252728293031
3.4.6 Operation Example-Simulation of two cold-start E communication	CU node182125272729303131

Domestic leading brand of automotive electronic tool chain

6.5 matters need attention	34
7.Disclaimer	34

1. Product profile

1.1 Product Overview

TC1034 is a 2 FlexRay, 2 CAN FD bus to USB interface equipment; can be easily competent for FlexRay network development, simulation, testing and other work.

TC1034 By TSMaster, software operation, can achieve multiple TC1034 parallel applications, or work with other same star FlexRay products. When cooperating with CAN, LIN and automotive Ethernet connection tools, TC1034 can make a single PC with high performance multi-bus analysis and simulation capabilities. Suitable for R & D personnel, test personnel, ECU production line and test engineer.

1.2 Typical applications

- FlexRay Flexible bus analysis;
- Accurate time analysis of the bus communication data;
- > ECU test analysis and gateway application;

1.3 Functions and parameters

1.3.1 Functional characteristics

- Windows, Linux system free drive free design, with excellent system compatibility
- Internal support 700 KB send buffer space, can concurrently store 240 send configuration
- ➤ 2 channel FlexRay channels (both channels contain A and B)
- ➤ A 2-way CAN FD channel
- ➤ CAN channel port rate 125 Kbps—1Mbps tunable
- With auxiliary communication controller, no need to add additional nodes when cold start
- Based on the TSMaster perfect adaptation of FlexRay, CAN / CAN FD bus application
- > Support for Windows, Linux system secondary development interface
- CAN terminal built-in 120 euro terminal resistance software configuration
- FlexRay Built-in 100 euro terminal resistance software configuration

1.3.2 Flexray Main functions

- > The communication controller cache can be flexibly configured
- Detects the empty frames
- > Composite communication mode can be composed of multiple cycles (Cycle multiplexing)
- Support for a maximum frame load of 254 bytes
- > support PDUs
- > There is a startup monitoring function
- Support for FlexRay, message recording and playback
- ➤ 2 FlexRay, the channel can be used as two FlexRay nodes in parallel

1.3.3 Technical parameters

channel	2 *FlexRay / 2 *CAN FD					
PC end	USB 2.0					
drive						
drive	Windows System drive-free design, with excellent					
F1 P	system compatibility					
FlexRay	FlexRay channel (A and B)					
cold boot	support					
CAN	Support CAN2.0A / B protocol, comply with					
	ISO11898-1 specification, port rate 125 Kbps1Mbps					
CAN FD	Support for ISO and non-ISO standard CAN FD, port					
	rate 125 Kbps8Mbps					
time stamp	lus, the hardware message timestamp, to meet the					
	high-order requirements					
insulate	FlexRay / CAN channel DC2500V isolation,					
	electrostatic grade contact discharge ± 8KV					
CAN terminal	Built-in 120 euro software configuration					
resistance						
FlexRay Terminal	Built-in 100 euro software configuration					
resistance						
supply	USB					
electricity						
Case	aluminium product					
material						
working	400G - 750G					
temperature	-40°C∼75°C					
Working	100/ 000//					
humidity 10% ~ 90% (no condensation)						
work						
environment	Stay away from the corrosive gases					
CIIVIIOIIIIEIIL						

1.3.4 Electrical parameters

				represe		
Parameter		test condition	least	ntative	crest	
			value	value	value	unit
	USB supply	Two flexray				
	electricity	messages	5.06	5.07	5.08	V
working	USB supply	Two CAN				
voltage	electricity	delivery channels	5.06	5.07	5.08	V
	USB supply	Two flexray				
	electricity	messages	0.44	0.45	0.46	A
working	USB supply	Two CAN				
current	electricity	delivery channels	0.42	0.43	0.44	A
	USB supply	Two flexray				
	electricity	messages	2.23	2.28	2.34	W
	USB supply	Two CAN				
power	electricity	delivery channels	2.13	2.18	2.24	W
	Bus pin					
	pressure	CANH, CAHL	-42		42	V
	resistance					
CAN	terminal	Enable terminal				
joggle	resistance	resistance		120		Ω
	Isolation and	The leakage				
	pressure	current is less	2500			VDC
	resistance	than 1 mA				
	Bus pin					
	pressure	Flexray-BP BM	0		24	V
	resistance					
Flexray	terminal	Enable terminal				
Interface	resistance	resistance		100		Ω
	Isolation and	The leakage				
	pressure	current is less	2500			VDC
	resistance	than 1 mA				

1.4 Supply list

- ✓ TC1034 Host machine
- ✓ USB cable
- ✓ DB9 female one cent two male CAN wire harness
- ✓ DB9 female one cent two male Flexray wire harness

2. Hardware instructions

2.1 Description of hardware appearance and interface

- ✓ The USB high-speed 2.0 interface
- ✓ DB9 interface

DB9 pin definition:

DB9 pin	channel	pin	definition	channel	pin	definition
		PIN1	Flexray_BM2		PIN2	CANFD1_Low
		PIN2	Flexray_BM1	CANFD 1/2	PIN3	CANFD_GND
		PIN3	Flexray_GND		PIN4	CANFD2_Low
	Flexray 1/2	PIN4	Flexray_BM3		PIN5	CANFD_Shield
6 0 0 1 2 3 4		PIN5	Flexray_BM4		PIN7	CANFD1_High
9 6 4 5		PIN6	Flexray_BP2		PIN8	CANFD2_High
		PIN7	Flexray_BP1			
		PIN8	Flexray_BP3			
		PIN9	Flexray_BP4			

Note: Pin PIN 2 is low CAN, and pin PIN 7 is high CAN, which is consistent with the international standard.

2.2 LED indicator light instructions

Physical picture of the indicator light:

Instructions for indicator light:

pilot lamp	definition
CANFD 1	The CANFD channel 1 indicator lamp
CANFD 2	The CANFD channel 2 indicator lamp
Flexray1	Flexray Channel 1 indicator light
Flexray2	Flexray Channel 2 indicator light
LINK	Hardware connection indicator light

Description of the color of the indicator light:

pigment	description					
LINK green light	The device hardware is connected					
FlexRay: green light	FlexRay Channel data frames are sent or received correctly					
FlexRay: red light	FlexRay The channel sends or receives incorrect frames,					
	configuration, protocol, or wiring errors					
CAN FD green light	CAN FD Channel data frames are sent or received correctly					
CAN FD red light	CAN FD The channel sends or receives incorrect frames,					
	configuration, protocol, or wiring errors					

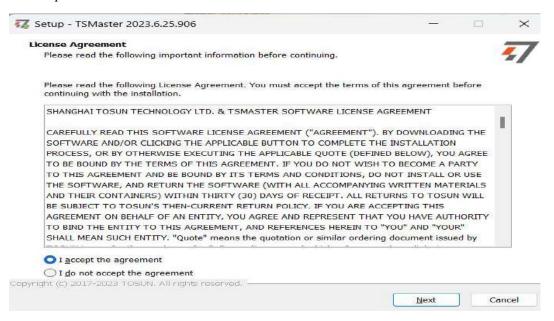
Note: The flicker frequency depends on the bus load.

3.Quick use

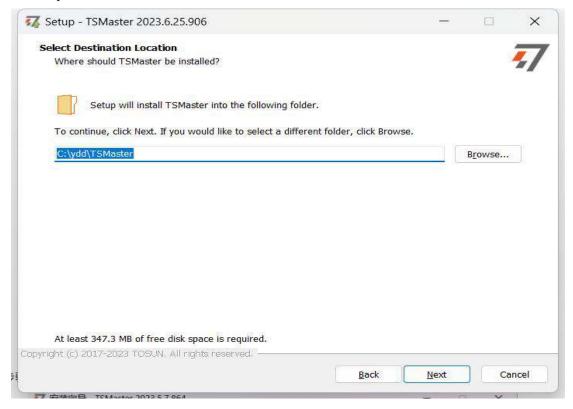
3.1 Download and install the TSMaster host computer

TSMaster Software download link:

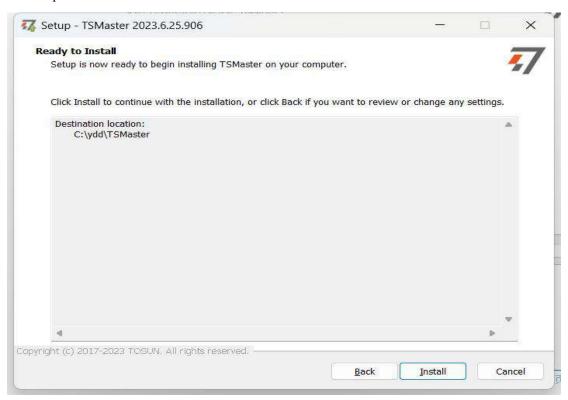
http://www.tosun.tech/TOSUNSoftware/TSMaster Setup beta.exe


If not accessible, you can contact the corresponding sales staff or log in to the official website of the same star to get the upper machine, and you can also scan the code to follow the public account to get the download link.

Step 1:



Step 2:



Step 3:

Step 4:

Complete installation:

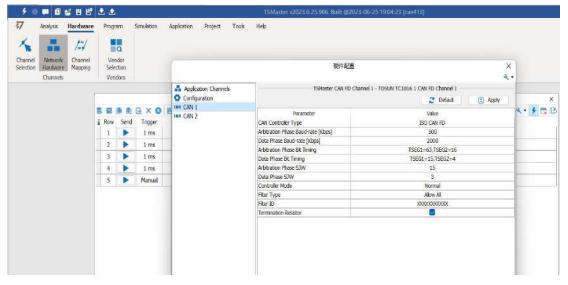
3.2 Hardware configuration

FlexRay Channel connection

TC1034 There are two FlexRay, and each FlexRay has channels A and B. And channels A and B can simulate the ECU node (NODE), and the pin connection is as follows:

BP1 and BM1 are the corresponding NODE1 CHA
BP2 and BM2 are the corresponding NODE1 CHB
BP3 and BM3 are the corresponding NODE2 CHA
BP4 and BM4 are the corresponding NODE2 CHB

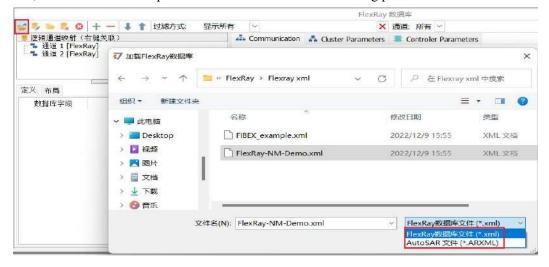
Example: If the tested ECU has only CHA, simply connect the PIN 2: FlexRay_BM1, PIN 7: FlexRay_BP1, and PIN 3: FlexRay_GND to the ECU.



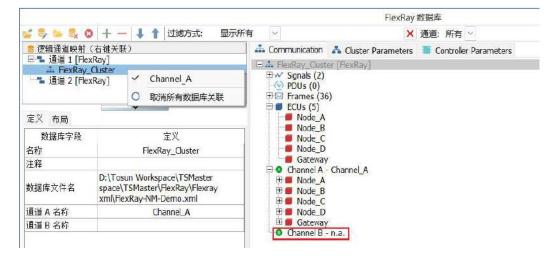
The CAN channel connection

The connection of CAN of TC1034, usually only needs to connect CANH and CANL to the CANH and CANL of the corresponding CAN ECU device.

CAN channel, hardware configuration can switch the CAN / CAN CFD protocol, adjust the port rate and switch terminal resistance, click the application after the configuration.



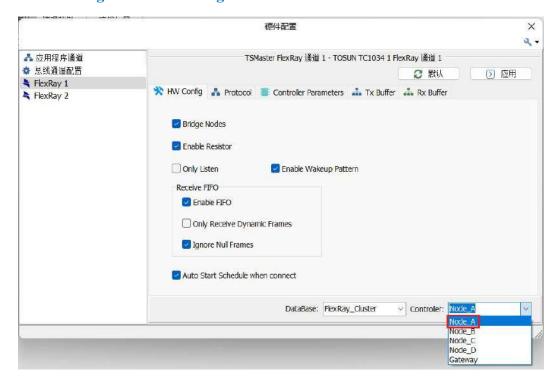
3.3 Flexray database loading


Before configuring the FlexRay channel, the corresponding FlexRay database file is usually loaded, supporting xml and arxml formats. The path is as follows:

There are two loading methods: the first can drag the xml file directly onto the TSMaster software, and the second can open the database file with the following path.

After loading xml, you can view the signal, the packet frame, the node of the ECU, Channel A and Channel B, where Channel B-n.a. Represents that Channel B was not used.

To load the same database for FlexRay channel 2, right-select "Channel A" on channel 2.


3.4 Flexray hardware configuration

Path: Hardware bus hardware FlexRay1

FlexRay The hardware configuration is divided into HW Config, Protocol, Controller Parameters, Tx Buffer, and Rx Buffer.

3.4.1 HW Config Hardware configuration

Bridge Nodes: The FlexRay1 and FlexRay2 channels used for the internal bridging of the TC1034.

Enable Resistor: enabling internal terminal resistance 100 euro.

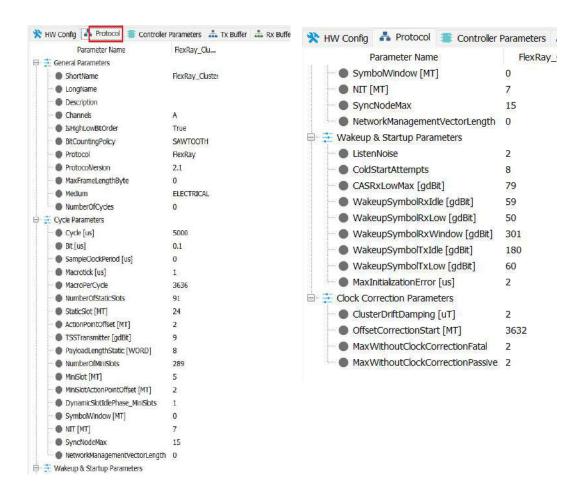
Only listen: Is it in the listening mode not.

Enable Wakeup Pattern: Enable wake mode, which will issue wake frame after the connection project.

Receive FIFO: Ability to receive FIFO, whether to receive only dynamic frames, whether to ignore empty frames.

Auto Start Schedule when connect: Automatically start the schedule table after the connection.

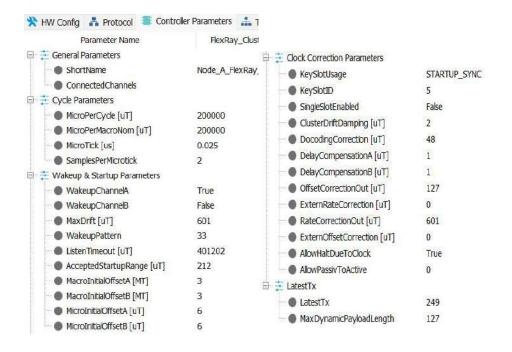
DataBase: The FlexRay Cluster for the current selection.


Controller: Select the controller node to select the channel, such as Node A.

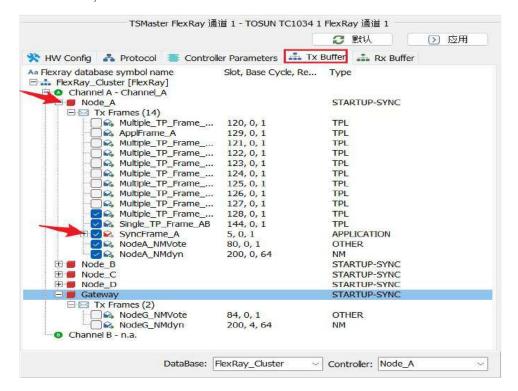
3.4.2 Protocol protocol

In the protocol, you can see: general parameters (General Parameters), Cycle parameters, wake up and start parameters, and clock correction parameters.

Usually, after the corresponding xml is loaded, all the parameters in the protocol are pre-set, and there is no special need to modify the parameters in the protocol.



3.4.3 Controller Parameters Controller parameters


Controller parameters, can be viewed: general parameters (General Parameters), Cycle parameters, wake and start parameters, and clock correction parameters and Latest Tx.

3.4.4 Tx Buffer (important configuration)

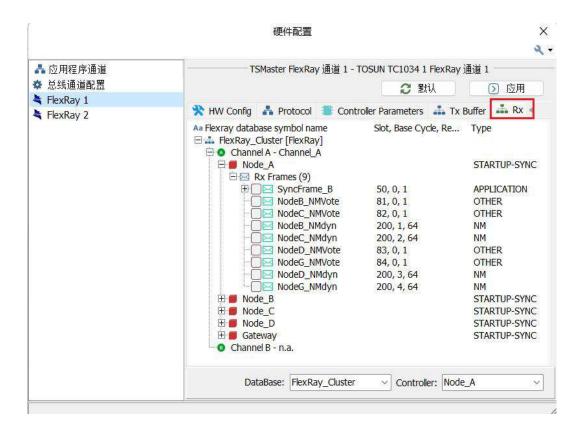
The ECU node such as Node _ A, where the red square before Node _ A, and the type STARTUP-SYNC, indicates that the ECU node has a cold start function.

Configure Tx Frames packet frame check: the selected message will be added to the scheduling table and run to send after starting the connection.

For the ECU node with cold start function, the red message logo should be checked for starting synchronization. For example, SyncFrame_A is the cold start message frame. SyncFrame_A

Note 1: In the FlexRay network, at least two ECU nodes are required to have a cold start function.

If the connected ECU does not have the cold start function, and the FlexRay channel 1 of TC1034 only simulates one cold start ECU node, the FlexRay network of the ECU will not be allowed to start normally.


Note 2: For the number of Tx Buffer messages sent, one TC1034 device can simulate 248 messages sent at the same time.

TC1034 The device has two FlexRay channels, each channel supports 124 simulation messages.

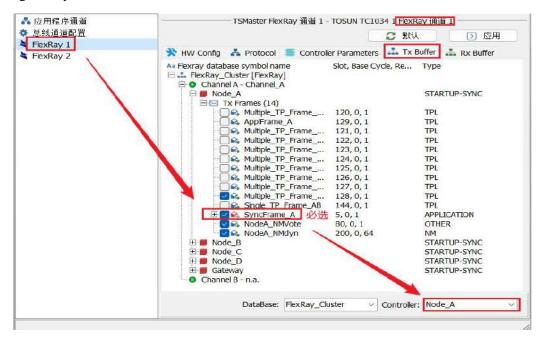
3.4.5 Rx Buffer

Usually, after the Enable FIFO is enabled in the HW Config, all the messages are received by default. At this point we can not configure the Rx Buffer.

Because RX BUFF is only used in A / B redundant messages, in other cases, enabling FIFO does not need to check the corresponding RX BUFF.

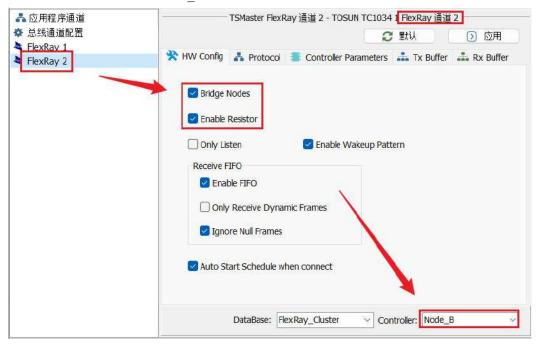
3.4.6 Operation Example-Simulation of two cold-start ECU node communication

The following shows that the two FlexRay channels 1 and 2 of TC1034 simulate the two ECU nodes A and node B with cold start respectively, and realize the network start.

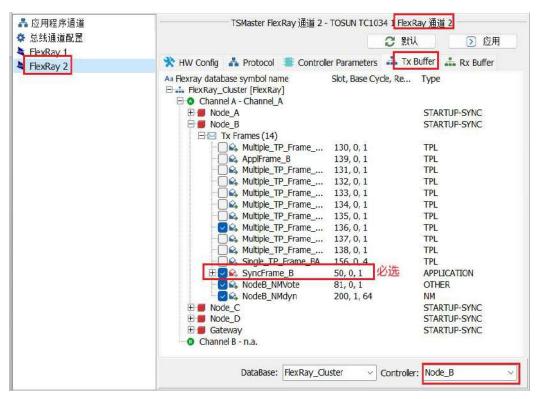

Step1: No physical connection of FlexRay1 and FlexRay2.

Step2: Bridge Nodes bridging of HW config with two FlexRay channels.

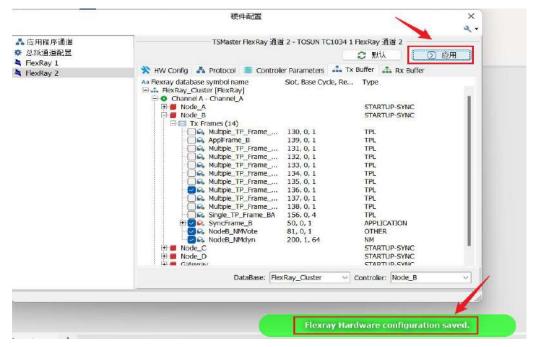
The Config configuration of FlexRay Channel 1 is as follows. Note the lower right controller selection of Node A.



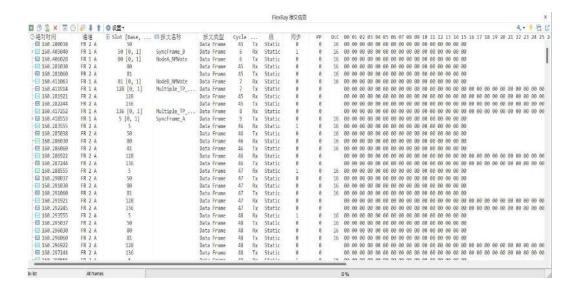
The Tx Buffer configuration of FlexRay channel 1 is as follows, where the red cold start message is required.



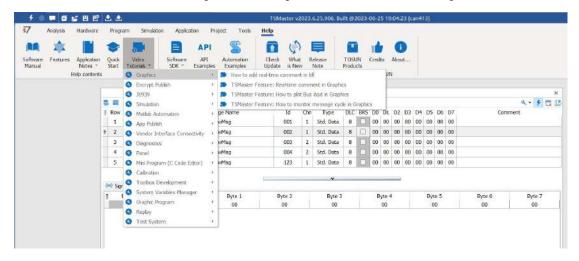
The Config configuration of FlexRay Channel 2 is as follows. Note that the lower right corner controller is selected as Node B.



The Tx Buffer configuration of FlexRay channel 2 is as follows, where the red cold start message is required.

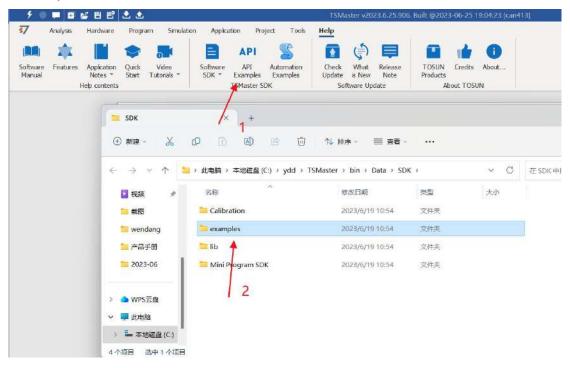

Step3: Application configuration, the software indicates that the configuration has been saved.

Step4: Create a FlexRay message message for message viewing.


Step5: Start the connection, start the FlexRay network, when you can hear the TC1034 relay sound. Channel FR 2A and 1A can be observed in the FlexRay message.

3.5 Help with documentation and video teaching

Various instructions and help manuals are provided in the TSMaster help bar.



At the same time, a large number of teaching videos can enter B station

<u>http s://space.bilibili.com/2042371333</u>, follow the tosun intelligent official number, watch all the teaching videos.

3.6 TSMaster API Secondary development

In the TSMaster help bar API routine, a variety of common language API is provided to facilitate users' secondary development. Efficient and easy-to-use secondary development functions that can support all kinds of development environments, such as C, Python, C #, Labview, etc.

3.6.1 Python Call to the dynamic library

Windows32-Position Python:

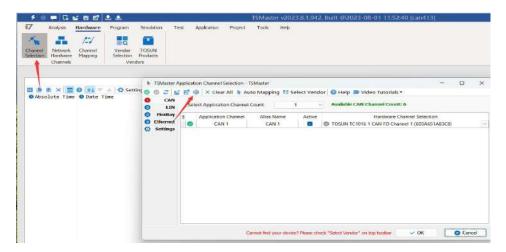
- (1) pip install TSMasterAPI
- (2) Using the TSMasterAPI form TSMasterAPI import * for
- (3) Example synchronous upload github, address: https://github.com/sy950915/TSMasterAPI.git

Windows64 bit Python / Li nux:

- (1) pip install libTSCANAPI
- (2) Using the TSMasterAPI form libTSCANAPIimport * for
- (3) Example synchronous upload github, address: https://github.com/sy950915/libTSCANAPI.git

3.6.2 C calls the dynamic library

(1) Include TSMaster in a file with a path of TSMaster \setminus bin \setminus Data \setminus SDK \setminus lib \setminus x86.h header file.


Such as: # include " TSMaster.h"

(2) Include TSMaster in a file with a path of TSMaster \setminus bin \setminus Data \setminus SDK \setminus lib \setminus x86. The lib file is connected to TSMaster.lib document.

In the C environment, add TSMaster to the Configuration Property connector input additional dependencies in the project property page.lib document.

3.6.3 Example of the calling of the interface

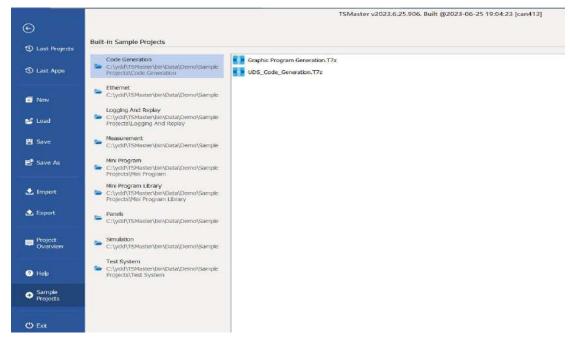
Windows, The Linux system provides the secondary development interface, easy to connect and use the equipment. The operation step are: select channel-generate C code-use C code / python code to call the interface. Take the code C, as an example:

C Script Fragments:

```
77 C脚本片段
       initialize lib_tsmaster("TSMaster");
       tsapp set can channel count(1);
       3 tsapp set lin channel count(0);
         tsapp_set_flexray_channel_count(0);
          tsapp_set_ethernet_channel_count(0);
       7
          TLIBTSMapping m;
       8
       9 // TSMaster CAN FD 通道 1 - TOSUN TC1034 1 CAN FD 通道 1
      10 m.init();
      sprintf_s(m.FAppName, "%s", "TSMaster");
sprintf_s(m.FHWDeviceName, "%s", "TOSUN TC1034");
           m.FAppChannelIndex = 0;
      13
          m.FAppChannelType = (TLIBApplicationChannelType)0;
      14
      15 m.FHWDeviceType = (TLIBBusToolDeviceType)3;
      16 m.FHWDeviceSubType = 15;
      17 m.FHWIndex = 0;
      18 m.FHWChannelIndex = 0;
          if (0 != tsapp set mapping(&m)) { /* handle error */ };
      19
      21
          if (0 != tsapp_connect()){ /* handle error */ };
      22
         /* do your work here */
      23
      24
      25
          tsapp_disconnect();
           finalize_lib_tsmaster();
      26
   C script call function description:
    initialize lib tsmaster ("TSMaster"); // TSMaster initialization function
   Tsapp set can channel count (1); // Set the number of can channels
   The tsapp set lin channel count (0); // Set the number of lin channels
   The tsapp set flexray channel count (0); // Set the number of flexray channels
   The tsapp set ethernet channel count (0); // Set the number of ethernet channels
   TLIBTSMapping m; // Initialize the construct
   // Set the TSMaster CAN FD channel 1-TOSUN TC1034 1 CAN FD channel 1 channel
mapping
   m. The init (); // initial construct m
   sprintf_s(m. FAppName, "%s", "TSMaster"); // Print the application name "TSMaster"
   sprintf s(m. FHWDeviceName, "%s", "TOSUN TC1034"); / Print the hardware device
name
   m. FAppChannelIndex = 0; // Application channel index
   m. FAppChannelType = (TLIBApplicationChannelType) 0; // Application channel type
```


- m. FHWDeviceType = (TLIBBusToolDeviceType) 3; // Hardware device type
- m. FHWDeviceSubType = 15; // corresponding parameters of hardware equipment *
- m. FHWIndex = 0; // Hardware index
- m. FHWChannelIndex = 0; // Hardware channel index
- if (0 != Tsapp _ set _ mapping (& m)) ${/* handle error */}; //$ If the return value is not equal to the 0 mapping failure

The tsapp _ disconnect(); // Disconnect the device finalize _ lib _ tsmaster(); // Release the C script module


* Note: The corresponding parameters of the hardware equipment can be found in the TSMaster-Help-Software Development Package :

TSMasterAPI_Hardware_Map.pdf

3.7 Sample Works

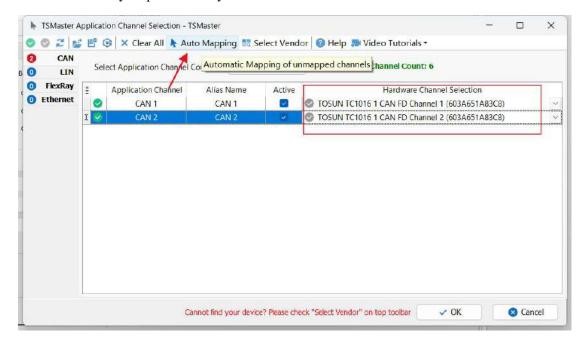
The example project provides a lot of Demo for user reference, greatly improving the user development efficiency.

4. Inspection and maintenance

TC1034 The main electrical component is the semiconductor component, although it has a long life, it may accelerate aging in the incorrect environment, greatly reducing the life. Therefore, regular inspections should be conducted during the use of the equipment to ensure that the use environment maintains the required conditions. It is recommended to check it up at least once every 6 months to a year. Under adverse environmental conditions, more frequent examinations should be performed. In the table below, if you encounter problems during maintenance, read below to find the possible cause of the problem. If the problem still cannot be solved, please contact Shanghai TOSUN Intelligent Technology Co., LTD.

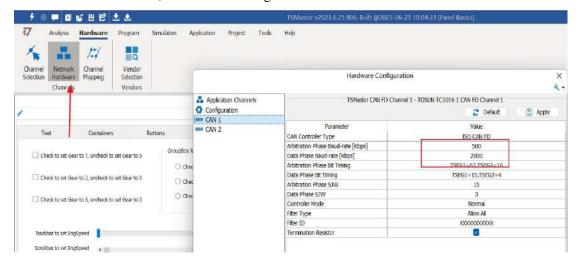
project	check up	standard	move about
			Use the voltmeter to check
			the source at the power
	Check the voltage		supply input end. Take the
	fluctuation at the power		necessary measures to make
power supply	supply side	7~18V DC	the voltage fluctuation
			within the range
	Check the ambient		Use the thermometer to
	temperature		check the temperature and
	(Including the internal		ensure that the ambient
	temperature of the enclosed	-40°C~+80°C	temperature remains within
	environment)		the allowable range
		Without air	Use a humidity meter to
	Check ambient humidity	conditioning, the	check the humidity and
surrounding	(Including the internal	relative humidity	ensure that the ambient
environment	humidity in the closed	must be at	humidity remains within the
	environment)	10%~90%	allowable range
	Check for the accumulation		
	of dust, powder, salt, and		Clean and protect the
	metal debris	No accumulation	equipment
	Check water, oil, or		If the cleaning and
	chemical spray collision into	No spray touched	protection equipment is
	the device	the equipment	required
	Check for corrosive or	No easily	Check by smelling or using


	flammable gases in the	corrosive or	a sensor
	equipment area	flammable gases	
		The vibration and	
		shock are within	
	Check the vibration and	the specified	Install the liner or other
	shock levels	limits	shock absorber, if required
		There are no	Isolation equipment and
	Check the noise sources	significant noise	noise sources or protection
	near the equipment	signal source	equipment
	Check the compression	There is sufficient	
	connector in the external	space between the	Visual scopic inspection
	wiring	connectors	adjust if necessary
Install wiring	Check for the damage to the		Visual inspection and
	external wiring	No damage	replace wiring if necessary

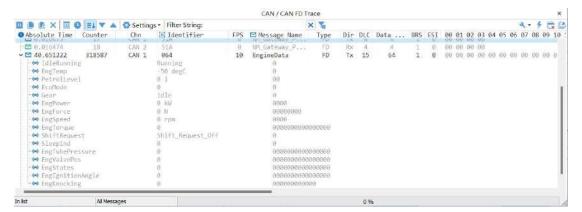

5. Common questions and answers

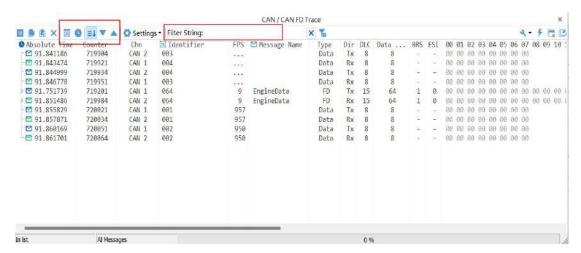
5.1 The line is connected correctly but cannot communicate properly:

Solution: Check if the number of channels is set. If CAN Channel Count = 0, of course no online hardware cannot display. And the software is configured by default virtual channel, you need to select the hardware real channel.

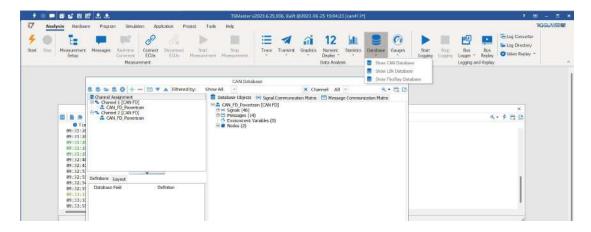


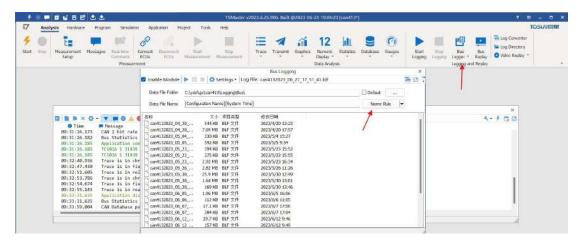
Automatically map or manually click to select the hardware real channel:




If the channel is selected correctly, it is necessary to ensure consistent port communication between the two channels, as shown in the figure below:

5.2 Inconvenient message observation and signal filtering:

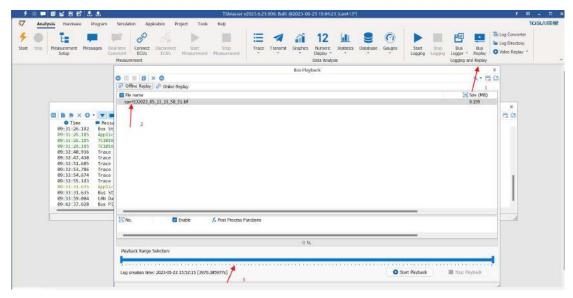

Solution: display in a fixed display or time order, expand or fold the signal display, and filter the string, click the following icon to operate:



5.3 How to load the database:

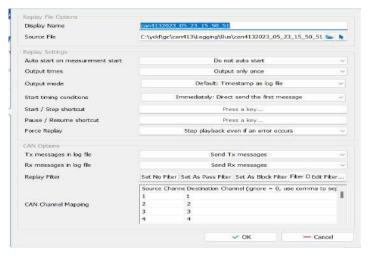
Select the can / lin / flexray database, click the upper left corner icon to add the database file, or drag the file directly into this window to be automatically loaded, and then click the left channel to associate the database.

5.4 How to automatically record the message messages:


operating steps:

- a. Analysis- -bus record
- b. Add a name rule to distinguish between different save files
- c. Add the self-start function
- d. Start the record

5.5 How to replay messages (offline and online playback):


operating steps:

- a. Bus playback
- b. Offline playback, add the need to be played packets, can drag and drop file add directly
- c. Select the range of message playback. Since the number of message display window is limited, you can choose the time period required for the message

- d. Bus playback-online playback-add recording files
- e. Online playback can playback the message according to the acquisition time stamp,and set the playback data

6.Appendix

6.1 CAN 2.0 Standard Frame:

The CAN standard frame information is 11 bytes, consisting of two parts: information and data parts. The first 3 bytes are for the information section.

	7	6	5	4	3	2	1	0	
					DLC (Data				
Bytes 1	FF	RTR	X	X		Le	ength)	
	(Messag	e io	lent	ifica	tion	code)	
Bytes 2			ID	.10	-ID.	3			
Bytes 3	ID.	.2-ID.0		X	X	X	X	X	
Bytes 4				Data	a 1				
Bytes 5		Data 2							
Bytes 6		Data 3							
Bytes 7		Data 4							
Bytes 8		Data 5							
Bytes 9				Data	a 6				
Bytes									
10	Data 7								
Bytes									
11				Dat	ta 8				

Byte 1 is the frame information. The 7th bit (FF) represents the frame format, in the standard frame, FF=0; the 6th bit (RTR) represents the type of frame, RTR = 0 is a data frame, RTR = 1 is a remote frame; the DLC represents the actual length of data at the data frame.

Bytes 2 and 3 are message identification codes, and 11 bits are valid.

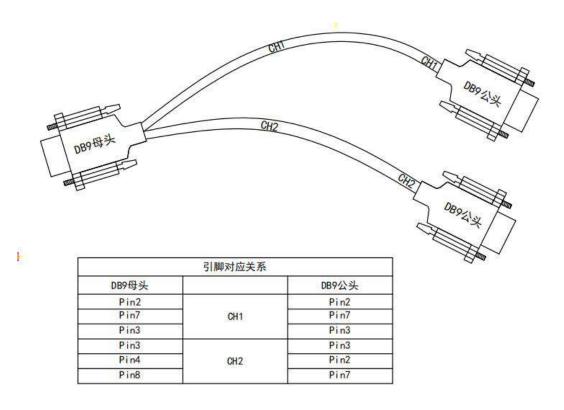
Bytes 4~11 is actual data of data frame, remote frame is invalid.

6.2 CAN 2.0 Expansion Frame:

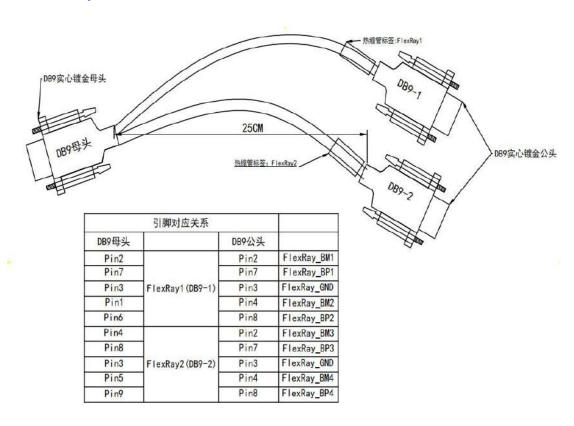
CAN extended frame information for 13 bytes, including two parts, information and data parts. The first 5 bytes are for the information section.

	7	6	5	4	3	2	1	0
					DLC (Data			
Bytes 1	FF	RTR	X	X		Leng	gth)	
		(Messag	e id	lenti	ificat	ion co	ode)	
Bytes 2			ID.	28-	ID.21			
Bytes 3			ID.	20-	ID.13	3		
Bytes 4			ID	.12-	ID.5			
Bytes 5		ID.4-	ID.)		X	X	X
Bytes 6				Data	a 1			
Bytes 7				Data	a 2			
Bytes 8				Data	a 3			
Bytes 9				Data	a 4			
Bytes 10		Data 5						
Bytes 11	Data 6							
Bytes 12	Data 7							
Bytes 13				Data	a 8			

Byte 1 is the frame information. The 7th (FF) indicates the frame format, FF = 1; the 6th (RTR)


It represents the type of frame, RTR = 0 as a data frame and RTR = 1 as a remote frame; DLC represents the actual data length at the data frame.

Byte 2~5 is the message identification code, and its high 29 bits is valid.


Bytes 6~13 is actual data of data frame, remote frame is invalid.

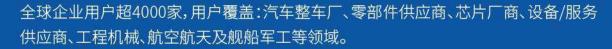
6.3 CAN DB9 One-in-two wire harness definition

6.4 Flexray DB9 One-in-two wire harness definition

6.5 matters need attention

- 1 Connect the lines to avoid short circuit.
- ② Before using the equipment, please carefully check the pin information in the product manual.
- 3 During the operation of the equipment, be sure to connect the power cord correctly and avoid plugging and unplugging.
- 4 Attention! Damage caused by electrostatic discharge (ESD).

7.Disclaimer


Shanghai TOSUN Technology, LTD. based on the principle of providing better service for users, will present detailed and accurate product information for users as much as possible in this manual. However, since the content of this manual has a certain timeliness, TOSUN Technology cannot fully guarantee the timeliness and applicability of the document in any period of time. TOSUN Technology has the right to update the contents of this manual without notice. In order to get the latest version of the information, please visit the official website of TOSUN Technology regularly or contact the staff of TOSUN Technology regularly. Thank you for your tolerance and support!

TOSW同星

同星智能成立于2017年,一直专注于研发国产自主可控的汽车电子基础工具链产品, 也是该领域国产领导品牌。

同星智能的核心软件TSMaster及配套硬件设备,具备嵌入式代码生成、汽车总线分析、 仿真、测试及诊断、标定等核心功能,覆盖了汽车整车及零部件研发、测试、生产、试验、 售后全流程。

扫码关注 获取软件下载链接

软件

- · UDS诊断
- · ECU刷写
- · CCP/XCP标定
- ·嵌入式代码生成
- ·应用发布/加密发布
- ・记录与回放
- 图形化编程
- ·剩余总线仿真
- · C/Python脚本
- · 总线监控/发送
- · SOMEIP和DoIP

硬件

- 1/2/4/8/12通道CAN FD/CAN转USB工具
- · 1/2/6通道LIN转USB工具
- · 10通道CAN FD/CAN转以太网工具
- ·多通道Flexray/CAN FD转USB工具
- ·多通道车载以太网/CAN FD转USB工具
- ·车载以太网介质转换工具(T1转Tx)
- ·多通道CAN FD/Ethernet/LIN记录仪

解决方案

- ·EOL测试设备
- ·FCT测试设备
- · 汽车"四门两盖"试验解决方案
- · 线控底盘测试解决方案
- · 电机性能/耐久试验解决方案
- ・新能源产线设备解决方案
- · 总线一致性测试解决方案
- · 信息安全解决方案