

Hardware IFU—TC1026P

Version: V1.10 | English

tosunai.com

Document Revision History:

Documentation Edition	date	Update content	remarks
V1.00	2023.5.5	Create a document	
V1.10	2023.7.5	Modify the document	

Copyright information

Shanghai TOSUN Technology LTD

6 / 8,4801, Jiading District, Shanghai

In line with the principle of providing better service to users, Shanghai TOSUN Technology LTD (hereinafter referred to as "TOSUN Technology") will present detailed and accurate product information to users as much as possible in this manual. However, since the content of this manual has a certain timeliness, the TOSUN Technology can not fully guarantee the timeliness and applicability of the document at any time period.

The information and data in this user manual are subject to change without notice. In order to get the latest version, please visit the official website of the company or contact the staff. Thank you for your tolerance and support! Any part of this manual shall not be reproduced in any form or in any manner without written permission of TOSUN Technology.

@ Copyright 2023, Shanghai TOSUN Technology LTD. All rights reserved.

catalogue

1. Product profile	1
1.1 Product Overview	1
1.2 Typical applications	1
1.3 Functions and parameters	1
1.3.1 Functional characteristics	1
1.3.2 Technical parameters	2
1.3.3 Electrical parameters	3
1.4 Shipping list	3
2. Hardware interface description	4
2.1 Description of the hardware interface	4
2.2 LED indicator light instructions	5
3. Quick use	6
3.1 Download and install the TSMaster host computer	6
3.2 Connect devices and configure channels	8
3.3 Message sending	9
3.4 Help with documentation and video teaching	10
3.5 TSMaster API Secondary development	11
3.5.1 Python calls the dynamic library	11
3.5.2 C calls the dynamic library	12
3.5.3 Example of the calling of the interface	12
3. 6 Sample Works	15
4. Inspection and maintenance	16
5. Common questions and answers	18
5.1 The line is connected correctly but cannot communicate properly:	18
5.2 Inconvenient message observation and signal filtering:	19
5.3 How to load the database:	20
5.4 How to automatically record the message messages:	20
5.5 How to replay messages (offline and online playback):	21
6. Appendix	22
6.1 CAN 2.0 Standard Frame:	22
6.2 CAN 2.0 Expansion Frame:	23
6.3 matters need attention	24
7. Disclaimer	24

1. Product profile

1.1 Product Overview

TC1026P is a multi-channel CANFD and LIN bus interface device launched by same Star Intelligence, CANFD bus rate support up to 8M bps, LIN support rate $0 \sim 20$ Kbps, the product uses high-speed USB2.0 interface and PC connection, Windows and Linux system drive design makes the device have excellent system compatibility.

With powerful TSMaster software, support loading DBC and ARXML database files, can easily monitor, analyze, simulate CAN FD / LIN bus data, can also support UDS diagnosis, ECU brush, CCP / XCP calibration and other functions.

Can be used for the secondary development API of Windows and Linux, can support various development environments, such as C + +, C #, LabView, Python, etc., convenient integration into various test systems, efficient and easy to use.

1.2 Typical applications

- ✓ Multi-channel CAN FD / CAN / LIN bus data acquisition
- ✓ Domain Controller Test
- ✓ Various automated test systems

1.3 Functions and parameters

1.3.1 Functional characteristics

- ✓ us (microsecond) level hardware message timestamp to meet higher order requirements.
- ✓ High-speed USB2.0 interface, Windows, Linux system drive-free design, with excellent system compatibility.
- ✓ CAN channel DC2500V sequestration.
- ✓ Automotive grade design, support LDF, dbc file, a2l file, blf file, asc file, arxml file.
- ✓ CAN channel port rate 125 Kbps- -1Mbps tunable.
- ✓ The LIN bus master and slave nodes can be software configured.
- ✓ Support for blf, asc format data recording and offline / online playback.
- ✓ UDS diagnosis and CCP and XCP calibration can be supported.
- ✓ Support for the UDS-based Flash Bootloader.
- ✓ LIN bus UDS based diagnosis can be supported.

- ✓ Support for information security testing.
- ✓ Support Windows, Linux system secondary development interface.
- ✓ Built-in 120 euro terminal resistance can be used in software configuration.
- ✓ Loadable TSMaster software all charge license

1.3.2 Technical parameters

channel	1 *CAN FD / 6 * LIN
PC terminal interface	High-speed of USB2.0
The CAN / LIN terminal interface	DB9
drive	Windows, Linux system free drive design, with excellent system compatibility
cache	Hardware cache, each channel sends buffer support to 1000 frames CAN / CANFD
CAN	Support CAN2.0A, B protocol, comply with ISO11898-1 specification, port rate 125 Kbps1Mbps
CAN FD	Support for ISO and non-ISO standard CAN FD, port rate 125 Kbps-8Mbps
LIN	Support LIN 1.3 and 2.0, Porter rate 020 Kbps
dispatch list	Support LDF files and run the schedule, or you can configure the schedule yourself
Time stamp accuracy	lus, the hardware message timestamp, to meet the high-order requirements
terminal resistance	Built-in 120 euro terminal resistance can be used in software configuration
Send a message per second *	Maximum of 20,000 frames / s
Receipt of message messages per second *	Maximum of 20,000 frames / s
insulate	CAN channel DC 2500V isolation, electrostatic grade contact discharge \pm 8KV
supply electricity	USB supply electricity
Case material	aluminium product
size	100mm*80mm*30mm
working temperature	-40°C~80°C
Working humidity	10% ~ 90% (no condensation)
work environment	Stay away from the corrosive gases

^{*} Single-channel 1Mbps, 0-byte data domain case

1.3.3 Electrical parameters

		test	least	representa	crest	
parameter		condition	value	tive value	value	unit
working	USB supply					
voltage	electricity	full load *	5.10	5.11	5.12	V
working	USB supply					
current	electricity	full load *	0.15	0.16	0.17	A
	USB supply					
power	electricity	full load *	0.77	0.82	0.87	W
	Bus pin pressure					
	resistance	CANH, CAHL	-42		42	V
CAN	terminal	Enable terminal				
joggle	resistance	resistance		120		Ω
	Isolation and	The leakage				
	pressure	current is less	2500			VDC
	resistance	than 1 mA				
	Bus pin pressure	LINO, LIN1	0		24	V
LIN joggle	resistance					
	VBAT voltage		5	12	24	V

^{*} Note: Full load for six LIN and one CAN at the same time.

1.4 Shipping list

- ✓ TC1026P Host machine
- ✓ USB cable
- ✓ DB9 one-in-nine banana head LIN wire harness * 2

2. Hardware interface description

2.1 Description of the hardware interface

- ✓ The USB high-speed 2.0 interface
- ✓ DB9 interface

DB9 pin	channel	pin	definition	channel	pin	definition	
		PIN1	GND3			PIN1	GND6
		PIN2	GND2		PIN2	GND5	
		PIN3	GND1		PIN3	GND4	
		PIN4	LIN3		PIN4	LIN6	
	LIN	PIN5	VBAT_LIN3	LIN	PIN5	VBAT_LIN6	
	1/2/3	PIN6	LIN2	4/5/6	PIN6	LIN5	
6 0 0 1 2 3 4		PIN7	VBAT_LIN2		PIN7	VBAT_LIN5	
9 6 5		PIN8	LIN1		PIN8	LIN4	
		PIN9	VBAT_LIN1		PIN9	VBAT_LIN4	
		PIN2	CANFD_Low				
	CANFD	PIN3	CANFD_GND				
		PIN5	CANFD_Shield				
		PIN7	CANFD_High				

Note: Pin PIN 2 is low CAN, and pin PIN 7 is high CAN, which is consistent with the international standard.

2.2 LED indicator light instructions

Physical picture of the indicator light:

Instructions for indicator light:

pilot lamp	definition
LIN1	The LIN channel 1 indicator light
LIN2	The LIN channel 2 indicator lamp
LIN3	The LIN channel 3 indicator light
LIN4	The LIN channel 4 indicator lamp
LIN5	The LIN channel 5 indicator light
LIN6	The LIN channel 6 indicator lamp
CANFD	The CANFD channel indicator lamp
LINK	Hardware connection indicator light

Description of the color of the indicator light:

pigment	description						
LINK green light	The device hardware is connected						
LIN green light	The LIN channel data frame is sent or received correctly						
LIN red light	The LIN channel sends or receives incorrect frames,						
	configuration, protocol, or wiring errors						
CAN FD green	CAN FD Channel data frames are sent or received correctly						
light							
CAN FD red light	CAN FD The channel sends or receives incorrect frames,						
	configuration, protocol, or wiring errors						

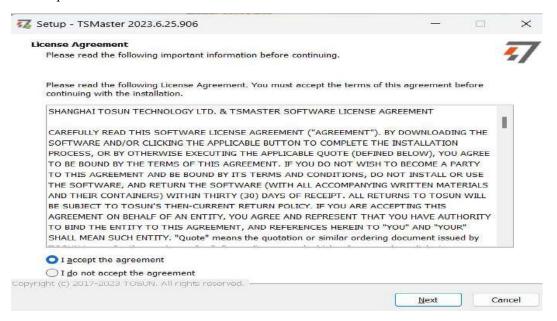
Note: The flicker frequency depends on the bus load.

3. Quick use

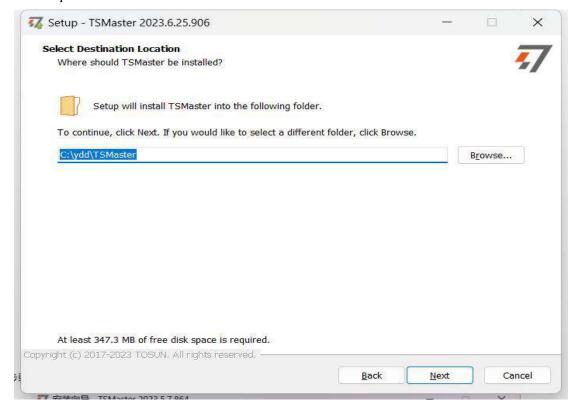
3.1 Download and install the TSMaster host computer

TSMaster Software download link:

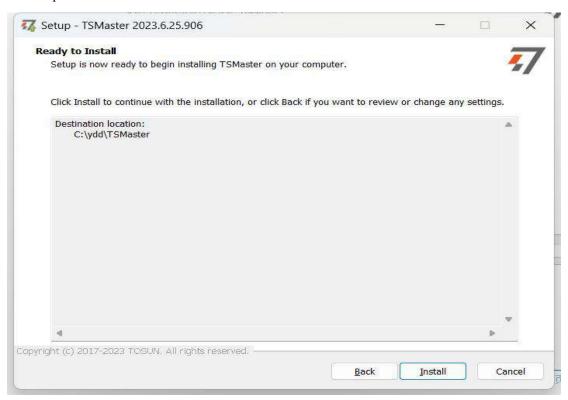
http://www.tosun.tech/TOSUNSoftware/TSMaster Setup beta.exe


If not accessible, you can contact the corresponding sales staff or log in to the official website of the same star to get the upper machine, and you can also scan the code to follow the public account to get the download link.

Step 1:

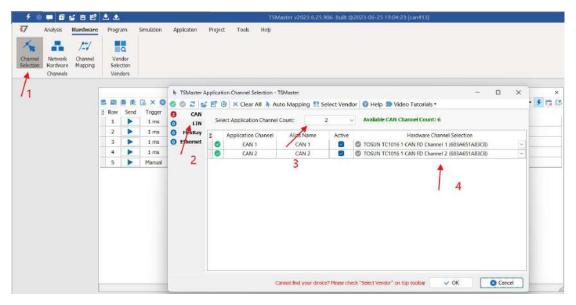


Step 2:

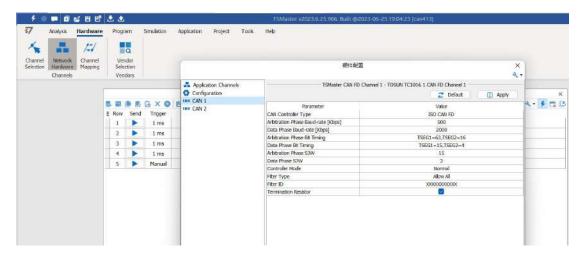


Step 3:

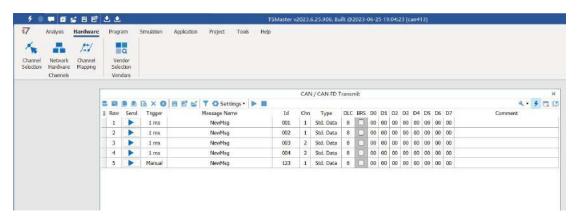
Step 4:


Complete installation:

3.2 Connect devices and configure channels


All TOSUN devices are drive-free, and can connect directly without download driver.

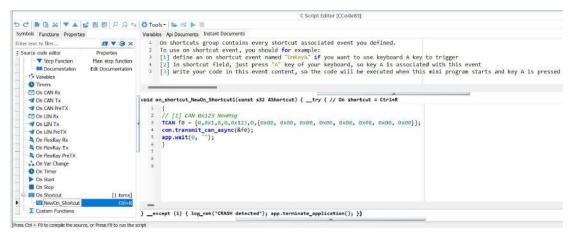
In TSMaster software interface: Click Hardware-click channel selection-drop-down box Select number of channels-select hardware channel-click OK



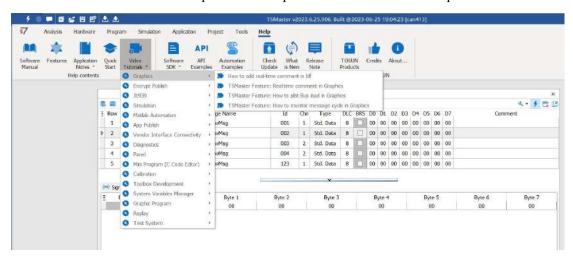
In the hardware configuration, the CAN / CAN FD protocol can be switched, and the baud rate and switch terminal resistance can be adjusted. After the configuration is completed, click application can take effect.

3.3 Message sending

After the hardware connection is completed and the software is configured, the function of message sending can be realized:


operating steps:

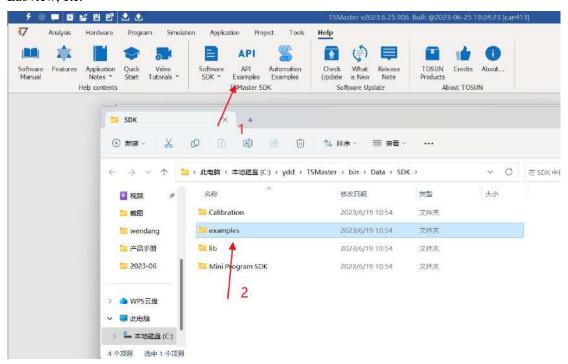
- a. Message sending-Add a CAN / CAN FD message for sending
- b. Right mouse button to create a new original message / add a message from the database, and set the message name / identifier / channel, etc
- c. Message am trigger setting, manual trigger / cycle trigger, cycle trigger can set the sending cycle
- d. Message information right click can generate a C script to quickly add to the C small program for programming


The following is an example of the build-C script:

Support for quick copy and paste to a C script to add send events:

3.4 Help with documentation and video teaching

Various instructions and help manuals are provided in the TSMaster help bar.


At the same time, a large number of teaching videos can enter B station

<u>http s://space.bilibili.com/2042371333</u>, follow the tosun intelligent official number, watch all the teaching videos.

3.5 TSMaster API Secondary development

In the TSMaster help bar API routine, a variety of common language API is provided to facilitate users' secondary development. Efficient and easy-to-use secondary development functions that can support all kinds of development environments, such as C, Python, C #, Labview, etc.

3.5.1 Python calls the dynamic library

Windows32-Position Python:

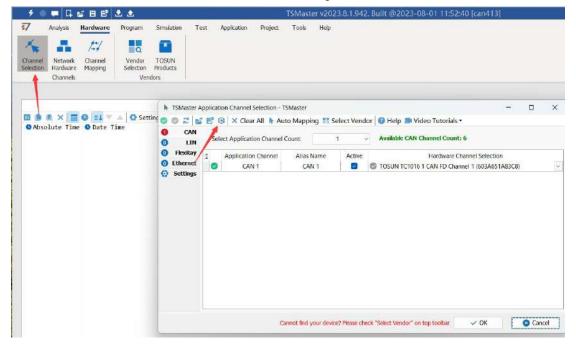
- (1) pip install TSMasterAPI
- (2) Using the TSMasterAPI form TSMasterAPI import * for
- (3) Example synchronous upload github, address: https://github.com/sy950915/TSMasterAPI.git

Windows64 bit Python / Li nux:

- (1) pip install libTSCANAPI
- (2) Using the TSMasterAPI form libTSCANAPIimport * for
- $(3) \ Example \ synchronous \ upload \ github, \ address: \ https://github.com/sy950915/libTSCANAPI.git$

3.5.2 C calls the dynamic library

(1) Include TSMaster in a file with a path of TSMaster \setminus bin \setminus Data \setminus SDK \setminus lib \setminus x86.h header file.


Such as: # include " TSMaster.h"

(2) Include TSMaster in a file with a path of TSMaster \setminus bin \setminus Data \setminus SDK \setminus lib \setminus x86. The lib file is connected to TSMaster.lib document.

In the C environment, add TSMaster to the Configuration Property connector input additional dependencies in the project property page.lib document.

3.5.3 Example of the calling of the interface

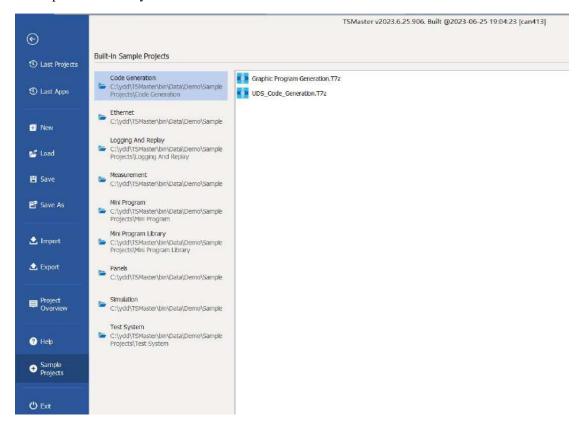
Windows, The Linux system provides the secondary development interface, easy to connect and use the equipment. The operation step are: select channel-generate C code-use C code / python code to call the interface. Take the code C as an example:

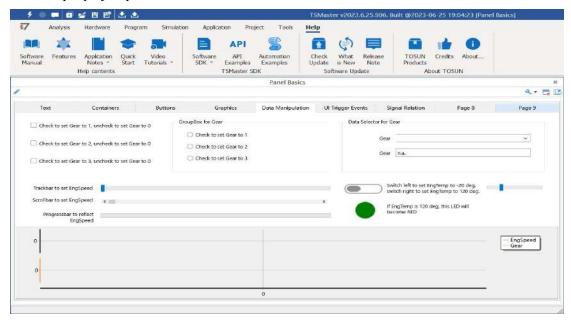
C Script Fragments:

```
77 C脚本片段
          initialize_lib_tsmaster("TSMaster");
          tsapp set can channel count(1);
          tsapp set lin channel count(0);
       3
          tsapp set flexray channel count(0);
          tsapp_set_ethernet_channel_count(0);
       7
          TLIBTSMapping m;
       8
          // TSMaster CAN FD 通道 1 - TOSUN TC1026 1 CAN FD 通道 1
       9
          m.init():
      10
          sprintf_s(m.FAppName, "%s", "TSMaster");
      11
          sprintf_s(m.FHWDeviceName, "%s", "TOSUN TC1026");
      12
          m.FAppChannelIndex = 0;
      13
          m.FAppChannelType = (TLIBApplicationChannelType)0;
          m.FHWDeviceType = (TLIBBusToolDeviceType)3;
      15
          m.FHWDeviceSubType = 10;
      16
          m.FHWIndex = 0;
      17
          m.FHWChannelIndex = 0;
          if (0 != tsapp_set_mapping(&m)) { /* handle error */ };
      19
      20
          if (0 != tsapp_connect()){ /* handle error */ };
      21
      22
          /* do your work here */
      23
      24
          tsapp_disconnect();
      25
          finalize lib tsmaster();
      26
   C script call function description:
   initialize lib tsmaster ("TSMaster"); // TSMaster initialization function
   Tsapp set can channel count (1); // Set the number of can channels
   Ttsapp set lin channel count (0); // Set the number of lin channels
   The tsapp set flexray channel count (0); // Set the number of flexray channels
   The tsapp set ethernet channel count (0); // Set the number of ethernet channels
   TLIBTSMapping m; // Initialize the construct
   // Set the TSMaster CAN FD channel 1-TOSUN TC1026 1 CAN FD channel 1 channel
mapping
   m. The init (); //initial construct m
   sprintf s(m. FAppName, "%s", "TSMaster"); // Print the application name "TSMaster"
   sprintf s(m. FHWDeviceName, "%s", "TOSUN TC1026"); / / Print the hardware device
name
```


- m. FAppChannelIndex = 0; // Application channel index
- m. FAppChannelType = (TLIBApplicationChannelType) 0; // Application channel type
- m. FHWDeviceType = (TLIBBusToolDeviceType) 3; // Hardware device type
- m. FHWDeviceSubType = 10; // corresponding parameters of hardware equipment *
- m. FHWIndex = 0; // Hardware index
- m. FHWChannelIndex = 0; // Hardware channel index
- if $(0 != Tsapp _ set _ mapping (\& m)) {/ * handle error * /}; / / If the return value is not equal to the 0 mapping failure$

The tsapp _ disconnect(); // Disconnect the device finalize _ lib _ tsmaster(); // Release the C script module


* Note: The corresponding parameters of the hardware equipment can be found in the TSMaster-Help-Software Development Package : TSMasterAPI Hardware Map.pdf



3. 6 Sample Works

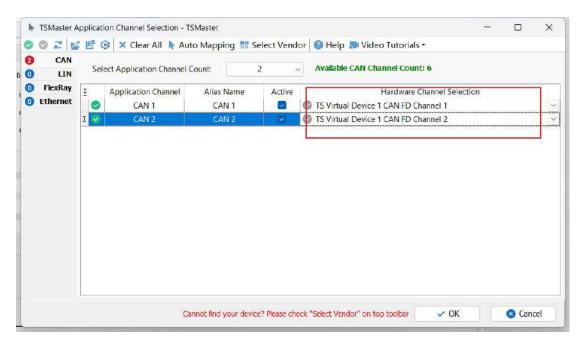
The example project provides a lot of Demo for user reference, greatly improving the user development efficiency.

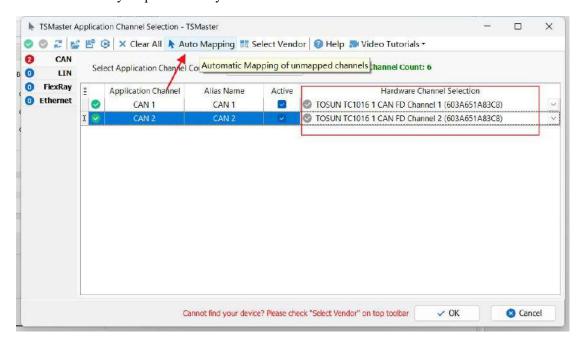
Sample project panel:

4. Inspection and maintenance

TC1026P The main electrical component is the semiconductor component, although it has a long life, it may accelerate aging in the incorrect environment, greatly reducing the life. Therefore, regular inspections should be conducted during the use of the equipment to ensure that the use environment maintains the required conditions. It is recommended to check up at least once every 6 months to a year. Under adverse environmental conditions, more frequent examinations should be performed. In the table below, if you encounter problems during maintenance, read below to find the possible cause of the problem. If the problem still cannot be solved, please contact Shanghai TOSUN Intelligent Technology Co., LTD.

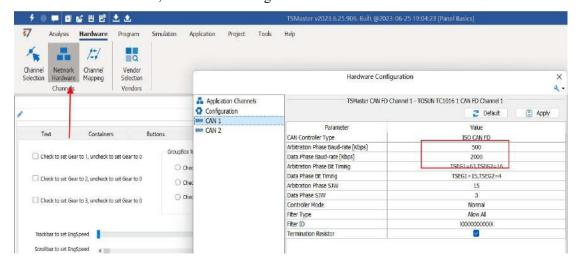
project	check up	standard	move about
			Use the voltmeter to check
			the source at the power
	Check the voltage		supply input end. Take the
	fluctuation at the power		necessary measures to make
power supply	supply side	7~18V DC	the voltage fluctuation
			within the range
	Check the ambient		Use the thermometer to
	temperature		check the temperature and
	(Including the internal		ensure that the ambient
	temperature of the enclosed	-40°C~+80°C	temperature remains within
	environment)		the allowable range
		Without air	Use a humidity meter to
	Check ambient humidity	conditioning, the	check the humidity and
surrounding	(Including the internal	relative humidity	ensure that the ambient
environment	humidity in the closed	must be at	humidity remains within the
	environment)	10%~90%	allowable range
	Check for the accumulation		
	of dust, powder, salt, and		Clean and protect the
	metal debris	No accumulation	equipment
	Check water, oil, or		If the cleaning and
	chemical spray collision	No spray touched	protection equipment is
	into the device	the equipment	required
	Check for corrosive or	No easily	Check by smelling or using


	flammable gases in the	corrosive or	a sensor
	equipment area	flammable gases	
		The vibration and	
		shock are within	
	Check the vibration and	the specified	Install the liner or other
	shock levels	limits	shock absorber, if required
		There are no	Isolation equipment and
	Check the noise sources	significant noise	noise sources or protection
	near the equipment	signal source	equipment
	Check the compression	There is sufficient	
	connector in the external	space between the	Visual scopic inspection
	wiring	connectors	adjust if necessary
Install wiring	Check for the damage to		Visual inspection and
	the external wiring	No damage	replace wiring if necessary

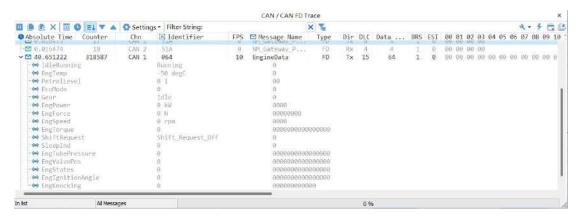

5. Common questions and answers

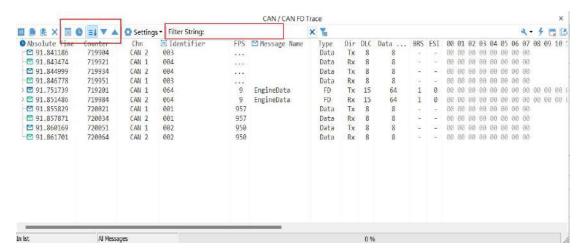
5.1 The line is connected correctly but cannot communicate properly:

Solution: Check if the number of channels is set. If CAN Channel Count = 0, of course no online hardware cannot display. And the software is configured by default virtual channel, you need to select the hardware real channel.

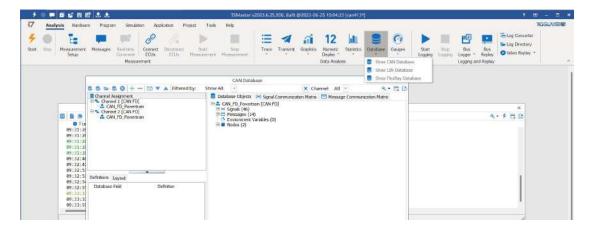


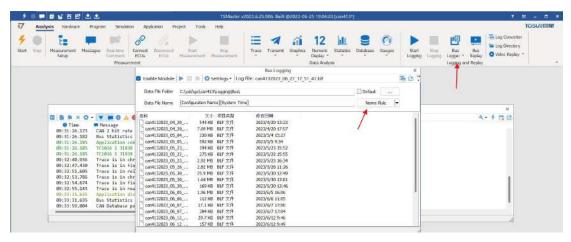
Automatically map or manually click to select the hardware real channel:




If the channel is selected correctly, it is necessary to ensure consistent port communication between the two channels, as shown in the figure below:

5.2 Inconvenient message observation and signal filtering:

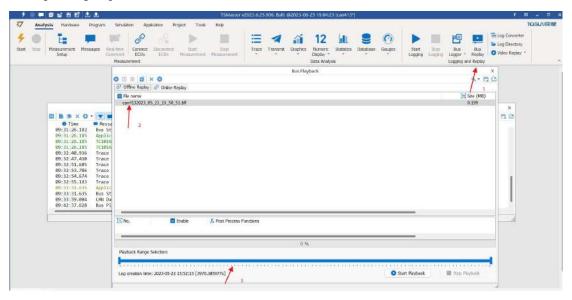

Solution: display in a fixed display or time order, expand or fold the signal display, and filter the string, click the following icon to operate:



5.3 How to load the database:

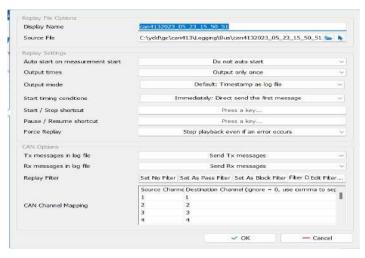
Select the can / lin / flexray database, click the upper left corner icon to add the database file, or drag the file directly into this window to be automatically loaded, and then click the left channel to associate the database.

5.4 How to automatically record the message messages:


operating steps:

- a. Analysis- -bus record
- b. Add a name rule to distinguish between different save files
- c. Add the self-start function
- d. Start the record

5.5 How to replay messages (offline and online playback):


operating steps:

- a. Bus playback
- b. Offline playback, add the need to be played packets, can drag and drop file add directly
- c. Select the range of message playback. Since the number of message display window is limited, you can choose the time period required for the message

- d. Bus playback-online playback-add recording files
- e. Online playback can playback the message according to the acquisition time stamp, and set the playback data

6. Appendix

6.1 CAN 2.0 Standard Frame:

The CAN standard frame information is 11 bytes, consisting of two parts: information and data parts. The first 3 bytes are for the information section.

	7	6	5	4	3	2	1	0
						DL	C (Da	ıta
Bytes 1	FF	RTR	X	X		Le	ength)
	(Messag	e io	lent	ifica	tion	code)
Bytes 2			ID	.10	-ID.	3		
Bytes 3	ID.	.2-ID.0		X	X	X	X	X
Bytes 4				Data	a 1			
Bytes 5	Data 2							
Bytes 6	Data 3							
Bytes 7	Data 4							
Bytes 8	Data 5							
Bytes 9		Data 6						
Bytes								
10	Data 7							
Bytes								
11				Dat	ta 8			

Byte 1 is the frame information. The 7th bit (FF) represents the frame format, in the standard frame, FF=0; the 6th bit (RTR) represents the type of frame, RTR = 0 is a data frame, RTR = 1 is a remote frame; the DLC represents the actual length of data at the data frame.

Bytes 2 and 3 are message identification codes, and 11 bits are valid.

Bytes 4~11 is actual data of data frame, remote frame is invalid.

6.2 CAN 2.0 Expansion Frame:

CAN extended frame information for 13 bytes, including two parts, information and data parts. The first 5 bytes are for the information section.

	7	6	5	4	3	2	1	0
					DLC (Data			
Bytes 1	FF	RTR	X	X		Leng	gth)	
		(Messag	e id	lenti	ificat	ion co	ode)	
Bytes 2			ID.	28-	ID.21			
Bytes 3			ID.	20-	ID.13	3		
Bytes 4			ID	.12-	ID.5			
Bytes 5		ID.4-	ID.)		X	X	X
Bytes 6				Data	a 1			
Bytes 7				Data	a 2			
Bytes 8				Data	a 3			
Bytes 9				Data	a 4			
Bytes 10		Data 5						
Bytes 11		Data 6						
Bytes 12	Data 7							
Bytes 13				Data	a 8			

Byte 1 is the frame information. The 7th (FF) indicates the frame format, FF = 1; the 6th (RTR)

It represents the type of frame, RTR = 0 as a data frame and RTR = 1 as a remote frame; DLC represents the actual data length at the data frame.

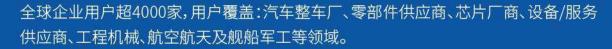
Byte 2~5 is the message identification code, and its high 29 bits is valid.

Bytes 6~13 is actual data of data frame, remote frame is invalid.

6.3 matters need attention

- 1 Connect the lines to avoid short circuit.
- ② Before using the equipment, please carefully check the pin information in the product manual.
- 3 During the operation of the equipment, be sure to connect the power cord correctly and avoid plugging and unplugging.
- 4 Attention! Damage caused by electrostatic discharge (ESD).

7. Disclaimer


Shanghai TOSUN Technology, LTD. based on the principle of providing better service for users, will present detailed and accurate product information for users as much as possible in this manual. However, since the content of this manual has a certain timeliness, TOSUN Technology cannot fully guarantee the timeliness and applicability of the document in any period of time. TOSUN Technology has the right to update the contents of this manual without notice. In order to get the latest version of the information, please visit the official website of TOSUN Technology regularly or contact the staff of TOSUN Technology regularly. Thank you for your tolerance and support!

TOSW同星

同星智能成立于2017年,一直专注于研发国产自主可控的汽车电子基础工具链产品, 也是该领域国产领导品牌。

同星智能的核心软件TSMaster及配套硬件设备,具备嵌入式代码生成、汽车总线分析、 仿真、测试及诊断、标定等核心功能,覆盖了汽车整车及零部件研发、测试、生产、试验、 售后全流程。

扫码关注 获取软件下载链接

软件

- · UDS诊断
- · ECU刷写
- · CCP/XCP标定
- ·嵌入式代码生成
- ·应用发布/加密发布
- ・记录与回放
- 图形化编程
- ·剩余总线仿真
- · C/Python脚本
- · 总线监控/发送
- · SOMEIP和DoIP

硬件

- 1/2/4/8/12通道CAN FD/CAN转USB工具
- · 1/2/6通道LIN转USB工具
- · 10通道CAN FD/CAN转以太网工具
- ·多通道Flexray/CAN FD转USB工具
- ·多通道车载以太网/CAN FD转USB工具
- ·车载以太网介质转换工具(T1转Tx)
- ・多通道CAN FD/Ethernet/LIN记录仪

解决方案

- ·EOL测试设备
- ·FCT测试设备
- · 汽车"四门两盖"试验解决方案
- · 线控底盘测试解决方案
- · 电机性能/耐久试验解决方案
- ・新能源产线设备解决方案
- · 总线一致性测试解决方案
- · 信息安全解决方案